An improved assimilation method with stress factors incorporated in the WOFOST model for the efficient assessment of heavy metal stress levels in rice

نویسندگان

  • Ming Jin
  • Xiangnan Liu
  • Ling Wu
  • Meiling Liu
چکیده

Heavy metal contamination in crops is a worldwide problem that requires accurate and timely monitoring. This study is aimed at improving the accuracy of monitoring heavy metal stress levels in rice utilizing remote sensing data. An assimilation framework based on remote sensing and improved crop growth model was developed to continuously monitor heavy metal stress levels over the entire period of crop growth based on the growth law of crops and the stress mechanism. Compared with other physiological indices, dry weight of rice roots (WRT) was selected as the best indicator to estimate heavy metal stress levels. The World Food Study (WOFOST) model, widely used for the description of crop growth, was improved by incorporating stress factors with overall consideration for the changes in physiological status under heavy metal stress. Three scenarios were put forward based on the stress factors fDTGA and fCVF, which, respectively, correspond to the daily total gross assimilation of CO2 and carbohydrate-to-dry matter conversion coefficient, and were analyzed for their efficiency of simulating WRT. A method of assimilating the leaf area index (LAI) retrieved from remotely sensed data into the improved WOFOST model was applied to optimize fDTGA and fCVF. The results suggested that the scenario using both factors can simulate WRT under heavy metal stress more accurately, with a relative percent error (RPE) lower than 14%. Based on the RS-WOFOST assimilation framework, continuous spatial-temporal evaluation of heavy metal stress levels based on WRT can be accomplished. © 2015 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating FAPAR of Rice Growth Period Using Radiation Transfer Model Coupled with the WOFOST Model for Analyzing Heavy Metal Stress

Timely assessment of crop growth conditions under heavy metal pollution is of great significance for agricultural decision-making and estimation of crop productivity. The object of this study is to assess the effects of heavy metal stress on physiological functions of rice through the spatial-temporal analysis of the fraction of absorbed photosynthetically active radiation (FAPAR). The calculat...

متن کامل

Deriving the Characteristic Scale for Effectively Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model

Accurate monitoring of heavy metal stress in crops is of great importance to assure agricultural productivity and food security, and remote sensing is an effective tool to address this problem. However, given that Earth observation instruments provide data at multiple scales, the choice of scale for use in such monitoring is challenging. This study focused on identifying the characteristic scal...

متن کامل

Comparative Analysis of GF-1 and HJ-1 Data to Derive the Optimal Scale for Monitoring Heavy Metal Stress in Rice

Remote sensing can actively monitor heavy metal contamination in crops, but with the increase of satellite sensors, the optimal scale for monitoring heavy metal stress in rice is still unknown. This study focused on identifying the optimal scale by comparing the ability to detect heavy metal stress in rice at various spatial scales. The 2 m, 8 m, and 16 m resolution GF-1 (China) data and the 30...

متن کامل

Effects of Inoculation with Mycorrhizal Fungi on Growth and Heavy Metals Concentrations in Two Wheat Cultivars under Salt Stress Condition

The soil salinity and the diffusion of potentially toxic chemicals to the soil environment through industrial and agricultural activities are known as important factors affecting the productivity of crop plants. Thus, an efficient strategy to increase crop yield, and to improve human and environmental health, is necessary to mitigate the impacts of these detrimental factors. Accordingly, a fact...

متن کامل

Extraction of Rice Heavy Metal Stress Signal Features Based on Long Time Series Leaf Area Index Data Using Ensemble Empirical Mode Decomposition

The use of remote sensing technology to diagnose heavy metal stress in crops is of great significance for environmental protection and food security. However, in the natural farmland ecosystem, various stressors could have a similar influence on crop growth, therefore making heavy metal stress difficult to identify accurately, so this is still not a well resolved scientific problem and a hot to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Applied Earth Observation and Geoinformation

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2015